Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(4)2023 03 29.
Article in English | MEDLINE | ID: covidwho-2291466

ABSTRACT

The COVID-19 pandemic has resulted in upwards of 6.8 million deaths over the past three years, and the frequent emergence of variants continues to strain global health. Although vaccines have greatly helped mitigate disease severity, SARS-CoV-2 is likely to remain endemic, making it critical to understand its viral mechanisms contributing to pathogenesis and discover new antiviral therapeutics. To efficiently infect, this virus uses a diverse set of strategies to evade host immunity, accounting for its high pathogenicity and rapid spread throughout the COVID-19 pandemic. Behind some of these critical host evasion strategies is the accessory protein Open Reading Frame 8 (ORF8), which has gained recognition in SARS-CoV-2 pathogenesis due to its hypervariability, secretory property, and unique structure. This review discusses the current knowledge on SARS-CoV-2 ORF8 and proposes actualized functional models describing its pivotal roles in both viral replication and immune evasion. A better understanding of ORF8's interactions with host and viral factors is expected to reveal essential pathogenic strategies utilized by SARS-CoV-2 and inspire the development of novel therapeutics to improve COVID-19 disease outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Open Reading Frames , Pandemics , Antiviral Agents
2.
Cell Rep ; 40(7): 111212, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-2060513

ABSTRACT

Evolutionary changes in host-virus interactions can alter the course of infection, but the biophysical and regulatory constraints that shape interface evolution remain largely unexplored. Here, we focus on viral mimicry of host-like motifs that allow binding to host domains and modulation of cellular pathways. We observe that motifs from unrelated viruses preferentially target conserved, widely expressed, and highly connected host proteins, enriched with regulatory and essential functions. The interface residues within these host domains are more conserved and bind a larger number of cellular proteins than similar motif-binding domains that are not known to interact with viruses. In contrast, rapidly evolving viral-binding human proteins form few interactions with other cellular proteins and display high tissue specificity, and their interfaces have few inter-residue contacts. Our results distinguish between conserved and rapidly evolving host-virus interfaces and show how various factors limit host capacity to evolve, allowing for efficient viral subversion of host machineries.


Subject(s)
Proteins , Viruses , Amino Acid Motifs , Humans , Proteins/metabolism , Viruses/metabolism
3.
Cureus ; 13(11): e19655, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1551840

ABSTRACT

Viral infections are frequently present before the clinical manifestation of Guillain-Barre syndrome (GBS). Multiple studies on coronaviruses have shown that these viruses have neurotropic characteristics, and their molecular mimicry can induce inflammatory demyelinating neuropathy. Herein, we describe a case of a GBS in an 85-year-old patient infected with SARS-CoV-2, manifested with acute progressive symmetric ascending quadriparesis, urinary dysautonomia, and dysphagia, who responded well to treatment with intravenous human immunoglobulin.

SELECTION OF CITATIONS
SEARCH DETAIL